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EFFECT OF COVER GAS PRESSURES U P  TO 4 ATMOSPHERES ON 

ACCELERATED CAVITATION DAMAGE IN SODIUM 

by S. G. Young and J, R. Johnston 
0 co 
'cc cr ABSTRACT 
E: Increasing cover gas pressures up to 4 atmospheres significantly 

increased cavitation damage to three materials; AIS1 type 316 stainless 

steel, L-605, and Stellite 6B in a vibratory test apparatus. Specimens 

were tested in sodium at 800' F (700' K). When volume loss was nor- 

malized to include only heavily damaged portions of specimens, damage 

increased exponentially with pressure for all materials. Materials were 

ranked with respect to cavitation damage resistance in the same order 

at high pressures as at low pressures. Metallographic studies were con- 

ducted to determine the nature of damage to the materials. 
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A 
An investigation was made to study the effect of pressure on the 

resistance to cavitation damage of materials under consideration for 

components of liquid metal power conversion systems. A vibratory 

apparatus was used to subject three materials, AIS1 316 stainless steel, 

L-605, and Stellite 6B to accelerated cavitation damage in sodium at 

800' F (700' I(), Argon cover gas was used to maintain pressures up 

to 4 atmospheres during test. Volume loss and volume loss rate 

measurements were used to compare the effects of pressure on the 

degree of damage, Metallographic studies were conducted to determine 

the nature of damage. 

Increasing cover gas pressure significantly increased cavitation 

damage to all materials for all exposure times. The materials ranked 

in the same order with respect to resistance to cavitation damage at all 

pressures; Stellite 6B was most resistant, L-605 intermediate and 316 

stainless steel, least resistant. The steady state volume loss rate based 

cm total specimen area increased linearly with cover gas pressure, When 

the volume loss rate data were normalized to include only the heavily 

damaged area of the specimens, the steady state volume loss rate in- 

creased exponentially with pressure. Metallographic examination of 

axially s ecticmed specimens revealed undercutting and transgranular 
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cracking as well as subsurface deformation for all materials. 

INTRODUCTION 

Components of advanced space power systems have shown cavita- 

tion damage in the form of pitting and surface erosion when tested for 

several hundred hours in liquid metal loops (ref, 1-3). Proposed power 

systems must function for 10 000 hours or  longer and it is important to 

determine the resistance to cavitation damage of candidate materials in 

advance of service. Studies are being made of the resistance of mate- 

rials to cavitation attack in liquid metals using accelerated types of 

laboratory tests, and considerable data describing material performance 

under cavitating conditions have been obtained. Some of the more recent 

of these investigations are described in references 4 to 6. 

Extensive research is also being conducted to investigate the mech- 

anism of cavitation and how the process causes material damage. Some 

of this work is presented in references 7 to 9. The process can briefly 

be described as follows:: When local pressures in fluids fall below the 

fluid vapor pressure, cavities form. The pressure within a cavity or 

cavitation bubble is believed to be near the vapor pressure of the fluid 

(ref, lo), When these cavities are then subjected to regions of higher 

pressure, they collapse with high velocity, If the collapse occurs on a 

solid surface such as a metal, localized high pressures can be trans- 

mitted to the surface resulting in severe damage. 

In power conversion systems, fluid pressures can vary, depending 

on the operating conditions, from near the fluid vapor pressures a t  the 

pump inlet to hundreds of pounds per square inch at the pump outlet, 
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Some early studies were made to determine the effect of higher pressures 

on accelerated cavitation damage in water (ref. 11)- These studies showed 

that increasing pressure up to 2 atmospheres increased cavitation damage, 

but higher pressures up to 4 atmospheres suppressed damage. Most 

other investigations of accelerated cavitation damage, and par- 

ticularly those using fluids other than water, have been per- 

formed at ambient pressures approximately equal to atmospheric 

pressur e, 

Greatly simplified, the difference between the local ambient pressure 

and the vapor pressure may be considered to be the net pressure o r  head 

available to collapse an existing cavitation bubble. The greater this pres- 

sure  difference, or driving force, the higher will be the velocity of the 

fluid bubble wall impacting the surface. As a result, the impact force 

will be higher and the resulting cavitation damage will be greater, Iso- 

lating the pressure effect is thus extremely important in achieving a 

better understanding of the cavitation phenomenon. The problem is com- 

plicated by the interrelations among fluid temperature and pressure and 

material properties. 

The purposes of this investigation were: (1) to determine the effect 

of increasing ambient pressure on cavitation damage to materials in a 

vibratory test apparatus; (2) to compare the relative ranking of materials 

at both high and low pressures, and (3) to investigate some of the metal- 

lurgical aspects of cavitation damage, 

In conducting this investigation, three materials with widely differ- 

ent mechanical properties were tested in sodium at 800' F (700° K) 
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using a magnetostrictive-type vibratory apparatus. Argon cover gas was 

used over the liquid sodium to maintain pressures ranging from one to 

four atmospheres 

loss measurements and by metallographic studies. 

MATERIALS, APPARATUS AND PROCEDURE 

Materials 

Cavitation damage was determined by obtaining volume 

The materials investigated were AIS1 type 316 stainless steel, and 

the cobalt-base alloys, 1;-605 (HS-25) and Stellite 6B. These three ma- 

terials were chosen because of the wide differences they exhibited to 

cavitation damage in sodium at atmospheric pressure (ref, 4). Type 

316 stainless steel showed low resistance to cavitation damage, L-605 

showed intermediate resistance to damage. Stellite 6B was the most 

resistant alloy. The nominal chemical composition of each alloy is 

listed in table I. The heat treatments, densities, and mechanical prop- 

erties are given in table II. 

Reactor grade sodium (99.95 percent purity) was used as the test 

fluid. Chemical analyses indicated an initial oxygen level of less than 

10 ppm for the sodium. Purity of the sodium was maintained by the 

addition of a titanium - sponge hot trap to the liquid metal bath. 

Accelerated Cavitation Damage Test Facility 

1 

The apparatus used is shown schematically in figure 1, A com- 

plete description of the facility and test procedure is given in reference 4, 

IFjgure 1 illustrates the vacuum dry box arrangement, magnetostrictive 

transducer assembly, and separately sealed liquid metal test chamber 

with associated argon line, vapor trap, and pressure gage. The d r y  box 
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and test chamber were evacuated to a pressure of approximately lom3 tor r  

(0.13 N/m ) and backfilled with high purity argon prior to testing. 2 

The specimen was attached to the end of a resonant system consisting 

of a transducer, exponential horn, and an extension-rod specimen holder. 

The amplitude and frequency of vibration were detected by a magnetic 

pickup, and read on an oscilloscope. An automatic feedback system main- 

tained constant amplitude irrespective of variations in resonant frequency 

induced by temperature changes. 

When the transducer assembly was lowered into position, a sleeve 

attached to the nodal flange on the amplifying horn sealed the liquid metal 

test  chamber from the dry box, and the test chamber pressure was reg- 

ulated through a separate argon line. Pressures  were measured with a 

precision pressure gage having an accuracy of 1/4 of 1 percent, 

Test Conditions 

The test conditions for each material are listed in table ZUC. All  

tests were run in sodium at 80Oo*1O0 F ('700' K); the vapor pressure of 

sodium at this temperature is 0.015 psia (1,03X10 N/m ) (ref. 12), The 

frequency of vibration of the test speoimens was nominally 25 000 Hz, 

and the peak to peak displacement amplitude was 0.00175 (k0, 00005) inch 

& 4 , 4 5 ~ 1 0 - ~  mm). 

approximately 0. 13 fnch (3. 3 mm). 

Test Procedure 

2 2 

The specimen surface wad immersed to a depth of 

The type of specimen used is shown in figure 2. The test surface of 

each specimen was metallographically polished before test to allow 

meaningful examination of the specimen surface at high magnification 

\ 
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during the early stages of damage. Prior to test the specimens were 

weighed and photographed, After each period of operation, the specimens 

were cleaned, weighed and rephotographed. Weight loss measurements 

were divided by density to obtain volume loss. 

Test duration was dependent upon the volume loss rate of each spec- 

imen. In most cases, the testing of a specimen was stopped after it 

maintained a relatively constant volume loss between weighings. 

After testing, the specimens were sectioned axially and examined 

metallographically to determine the depth of cavitation attack and to 

study any reaction zones that might exist between the sodium and the 

specimen material, 

CAVITATION DAMAGE RESULTS 

Cavitation damage, expressed as cumulative volume loss and as 

volume loss rate is plotted against time for each material tested in fig- 

ures 3 through 8, The effect of pressure on the rate of cavitation damage 

is plotted in figures 9 and 10. Cavitation damage data a r e  also summarized 

in table IV. The results of metallographic studies are presented in fig- 

ures 11 through 160 

Volume Loss and Volume Loss Rate 

The cavitation damage to L-605 at 1, 2, 3, and 4 atmospheres is 

shown as volume loss in figure 3, and as volume loss rate in figure 4, 

Volume loss rate curves were obtained by dividing the volume loss be- 

tween successive weighings by the increment of test time between them. 

These values were then plotted midway between the weighing times. From 

figures 3 and 4, it is evident that cavitation at higher pressures results 



7 

in: (1) higher cumulative volume loss, (2) a higher volume loss rate peak, 

and (3) a higher level of steady state volume loss rate. The steady state 

region is defined in this investigation as the zone of minimum volume loss 

rate after the damage rate has passed through a peak, In this region the 

volume loss rate does not change significantly over an extended period of 

time; and values for a relatively steady-state damage rate can be deter- 

mined. It is interesting to note that the shape of the rate curve varies 

with pressure (fig,, 4). A s  the pressure is increased, the peak of the 

damage rate curve is higher, narrower, and occurs earlier. 

During the one atmosphere test the first L-605 specimen tested failed 

at the threaded joint after 90 minutes exposure. The test was repeated 

with a second specimen and continued for 360 minutes. Damage was 

slight during the 90 minutes, and the data were virtually identical 

for the two specimens. Consequently, one smooth curve was  drawn 

through the data. At  3 atmospheres, a similar specimen failure occurred 

after 120 minutes. A second specimen was therefore run and the test 

continued for a total 360 minutes, Because the cumulative volume loss of 

the two specimens run at the same pressure showed a difference of about 

10 cubic millimeters at the 120 minute point, separate curves are plotted 

in figures 3 and 4. 

Figure 4 shows that the volume loss rate curves increase for the 

specimens tested at 3 and 4 atmospheres after 240 minutes. This increase 

is most likely due to undercutting of the surface by cavitation and the 

resultant loss of large particles of material. Some large particles of 

specimen material were found in the sodium bath., F’urther evidence of 

- 
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such undercutting is presented in the section dealing with the metallo- 

graphic studies. 

Volume loss and volume loss rate curves are shown in figures 5 

and 6, respectively, for type 316 stainless steel at 1, 2.7, and 4 atmos- 

pheres. Similar curves for Stellite 6B are shown in figures 7 and 8. 

Increasing the test pressure increased the cumulative volume loss in 

each case and both materials exhibited steady state volume loss rates 

that increased with increasing pressure. However, the volu,me loss 

rate peaks were not as well defined as for the L-605 specimens (fig. 4). 

The effect of pressure on the volume loss of the Stellite 6B specimens 

was not as clearly defined as in the case of the other materials. There 

is relatively little spread between the 2.7 and 4 atmosphere test results. 

The unusual behavior of this material may be due in part  to the changing 

patterns of the damage, This will be discussed further in the section on 

metallography. Although there is an overlap of the rate curves for 

Stellite 6B (fig, 8), the peak damage rate and steady state damage rate 

increase with increasing test pressure. 

Relation Between Steady State Volume Loss Rate and Pressure 

The steady state volume loss rates for 14-605, 316 stainless steel 

and Stellite 6B determined from figures 4, 6, and 8, respectively, are 

listed in table Tv. These values are plotted against pressure in figure 9, 

Assuming that cavitation damage can be expressed by the steady state 

volume loss rate of a material, damage increases linearly with ambient 

pressure for  the pressure range considered. Of course, under other test 

conditions (different amplitudes of vibration, temperature, specimen size, 
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etc. ) this relation might not hold true, It is important to note that the 

resulting linear relation is based upon the conventional method of 

measuring cavitation damage which does not take into account the dam- 

age pattern. 

From the photographs of figures 11 to 15, it is obvious that there 

is an area of heavy damage, and a surrounding area of little o r  no dam- 

age on the tested specimens, The heavily damaged area was reduced in 

s ize  but its depth increased as the cover gas pressure was increased. 

If the volume loss rate data a r e  normalized on the basis of damaged area 

only, the effect of pressure on volume loss rate will no longer be linear 

but volume loss rate will vary as a power of pressure. The normalized 

cavitation damage data a r e  listed in table V and plotted in figure loo 
In figure 10, the slopes of the curves for 316 stainless steel, L-605, 

and Stellite 6B are 2.0, 2. 2, and 2. 7, respectively, 

The results of the present investigation differ from those obtained 

by previous investigators (ref. 11). Using a low frequency (6500 El%) magneto- 

strictive device in water, they found that for a given exposure time, 

damage increased with increasing pressure up to about 2 atmospheres 

and subsequently decreased as pressure was further increased, No 

damage was observed at 4 atmospheres, We  believe that because the 

apparatus used for the earlier tests (ref. 11) had a relatively low fre- 

quency resulting in relatively low fluid velocities, cavitation was re- 

duced at the higher pressures. The high frequency device used in the 

present investigation is capable of generating more cavitation at the 
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higher fluid pressures. 

From figures 9 and 10, it is also apparent that materials have the 

same relative ranking with respect to cavitation damage resistance at 

high pressures that they have at atmospheric pressure. Accelerated ma- 

terial damage tests, therefore, may be run at higher ambient pressures,  

and test time can be shortened by at least an order of magnitude. 

A 316 stainless steel specimen was run for a test time of 16 hours 

at 0. 5 atmosphere, During the last 8 hours of this test, the specimen had 

a steady state damage rate of approximately 0, 5 cubic millimeter per 

hour. This value is also plotted on figure 9. It is believed that a zero 

damage rate occurs when cover gas pressure is very near the vapor pres- 

sure  of the fluid. 

It can be observed from figure 9 that the curves for more severely 

damaged materials have the steeper slopes; and it would appear that the 

relative effect of pressure on the damage rate is greater for the less 

resistant materials. If, however, the data are normalized (fig. 101, this trend 

is reversed; that is, the curves of the more resistant materials have 

steeper slopes and the relative effect of pressure on the damage rate is 

greater for the more resistant materials. 

Metallography 

Macrographs were taken of all the specimens tested. The damaged 

surfaces of L-605 specimens are illustrated in figure 11- After only 

15 minutes severe damage is evident in specimens exposed at 4 atmos- 

pheres, whereas the specimens exposed at 1 atmosphere show veryli t t le 

damage even after 60 minutes of testing. Several large projections can 



11 

be seen in the central portion of the surfaces of specimens exposed for 

360 minutes at 3 and 4 atmospheres. Undercutting and loss of such pro- 

jections are believed to be the reason the volume loss rate curves (fig. 4) 

showed an increase at the longer exposure times. Evidence of under- 

cutting is apparent in the macrographs of figure 12. This figure clearly 

shows the increasing depth and amount of attack with increasing pressure. 

Wider undamaged r ims and greater undercutting are evident in the speci- 

mens tested at higher pressures., Calculated areas of heavy damage are 

shown in table V. 
Damaged surfaces of 316 stainless steel and Stellite 6B specimens 

are shown in figures 13 and 14, respectively. As in the case of L-605, 

damage at 4 atmospheres was much more severe than that at 1 atmos- 

phere, and damage was primarily concentrated in the central region of 

the specimens. The 316 stainless steel specimen sustained such severe 

attack at 4 atmospheres that even portions of the r im were damaged. 

Although not shown, the heavily damaged specimens of 316 stainless 

steel and Stellite 6B were also sectioned and macrographs were taken, 

These had a similar appearance to the sectioned L-605 specimens shown 

in figure 1 2  

Photomicrographs were taken of the surfaces of the L-605 specimens 

in the early stages of cavitation attack, These together with the original 

microstructure of a L-605 specimen are shown in figure 15- The speci- 

men was electrolytically etched with a solution of HC1 (30 ml) and H20Z 

(3 drops), and was repolished before testing. Specimens tested at pres- 

sures  above 2 atmospheres were damaged too severely to show significant 
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features under high magnification. In all cases during the early stages of 

damage, attack along grain and twin boundaries was noted. 

Figure 16 shows photomicrographs of sectioned specimens of all materials 

before and after testing. All of the materials tested exhibited gross under- 

cutting and transgranular cracking. Evidence of sub-surface deformation 

existed in the form of slip bands for all materials. Bending of twin bound- 

ar ies  was observed in L-605 (fig. 16(a)). Breaking of sub-surface carbides 

in Stellite 6B is apparent in figure 16(c), No evidence of any reaction zone 

was found in the cavitation damaged regions of any specimen. 

Comparison of Accelerated Cavitation Damage and Pump Impeller Test 

Results 

An interesting example of the effect of pressure on cavitation damage 

to a pump impeller operated in a liquid metal has been reported in ref- 

erence 1. In this investigation an impeller of 316 stainless steel was 

operated first in water at room temperature then in potassium at 1400' F 

(1033' K). Photographs were taken of the cavitation cloud formations 

near the impeller vanes during operation in water at various pump inlet 

pressures and flow conditions. From these photographs (figs. 26 through 

30, ref. 1) it can be seen that, in general, extensive cavitation cloud 

formations occurred in the low pressure regions near the inlet. Higher 

pressure regions showed considerably less cavitation. 

After  the impeller was run in potassium at 1400' F (1033' K) for 

350 hours, impeller vanes were examined for cavitation damage. Severe 

vane damage occurred in the region of higher pressure while little or no 

damage was noted near the inlet where lower pressures were encountered, 
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These results indicate that cavitation bubbles collapsing in a high pres- 

sure  region cause much more damage than bubbles that collapse in a 

lower pressure region. Thus, observations made in an actual pump 

application agree qualitatively with the results of our accelerated 

tests. 

SUMMARY OF RESULTS 

The effect of pressure on the resistance to cavitation damage of 

candidate materials for components of liquid metal space power con- 

version s y s t e m  was investigated. A vibratory apparatus was used. 

Three materials, L-605, Stellite 6B, and 316 stainless steel were 

subjected to accelerated cavitation damage in 800' F (700' K) sodium 

under cover gas pressures of 1 to 4 atmospheres., The following re- 

sults were obtained: 

lo Increasing cover gas pressure significantly increased cavita- 

tion damage to all materials. 

under one atmosphere pressure for 360 minutes exhibited a volume loss 

of 10 cubic millimeters, as compared to 200 cubic millimeters after 

For example, an L-605 specimen tested 

360 minutes under 4 atmospheres. This result implies that in fluid 

systems where cavitation occurs in high pressure regions, damage to 

components may be much greater than would normally be expected from 

cavitation tests conducted at atmospheric pressures, 

2. Within the range of conditions (specimen size and cover gas 

pressures) considered in this investigation, the steady state volume 

loss rate (based upon total specimen area) for each material increased 

linearly with cover gas pressure, When the volume loss rate data were 
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normalized to include only the heavily damaged area of the specimens, 

the steady state volume loss rate increased exponentially f rom 2.0 to 

2 - 7  power of pressure, 

3. The relative ranking of the materials with respect to resistance 

to cavitation damage was the same regardless of cover gas pressure, 

(It was, in order of increasing damage - Stellite 6B, L-605 and 316 

stainless steel.) This result together with the fact that the damage 

rate increases with increasing pressure suggests that a greater num- 

ber of materials may be evaluated in a given time at higher pressures 

than at atmospheric pressure, 

4, Metallographic examination of axially sectioned specimens of 

all the materials tested revealed severe undercutting of the surface 

and transgranular cracking, Subsurface deformation was indicated in 

all materials by the appearance of slip bands. Stellite 6B showed ex- 

tensive cracking of carbides beneath the surface, and L-605 exhibited 

some bending of twins near the surface, 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio. 

slk - 5/15/67 
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TABLE III. - TEST CONDITIONS 19 

[Temperature, 800&10° F (7000 K); fluid, 
sodium (99.95 percent purity); frequency, 
25 000&500 Hz; amplitude, 0.00175~0.00005 

\ \  inch ( 4 . 4 5 ~ 1 0 - ~  mm)J , . .  

~ 

Material 

Stellite 6B 
Stellite 6B 
Stellite 6B 
L-605 
L-605 
L-605 
L-605 
316 stainless steel 
316 stainless steel 
316 stainless steel 

a Pressure, 
a tm 

1.0 
2.7 
4.0 
1.0 
2.0 
3.0 
4.0 
1.0 
2.7 
4,o 

Total test time, 
min 

600 
540 
480 
360 
360 
360 
360 
240 
300 
240 

%ominal pressure, &0.02 atmosphere (1 at- 
mosphere = l.OlXl0 5 N/m 2 ). 
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. TABLE V. - DETERMINATION O F  NORMALIZED STEADY STATE 

VOLUME LOSS RATE 

Material 

Stellite 6B 
Stellite 6B 
Stellite 6B 
L-605 
L-605 
L-605 
L-605 
316 stainless steel 
316 stainless steel 
316 stainless steel 

Pressure, 
atm 

1-0  
2.7 
4.0 
1.0 
2.0 
3.0 
4.0 
l e  0 
2.7 
4.0 

Heavy damage 
a area, 

2 mm 

140 
96 
45 

150 
140 
99 
80 

130 
96 
74 

Normalizing 
factors b 

172 
1.7 
3.6 
1. 1 
1.2 
1.6 
2.0 
1. 2 
1.7 
2.2 

Normalized steady 
state volume 

loss rate: 
3 mm /hr 

0.6 
8.5 

2.6 
26 

13 
28 
55 

46 
90 

5.2 

"(Average dihmeter of damaged area)' x r/4. 
'Area of undamaged specimen/heavy damaged area. / ,  

'Steady state volume loss rate (from table IV) x nor'malizing factor. 
. ,  i 
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